skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Momjian, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interaction between radio jets and quasar host galaxies plays a paramount role in quasar and galaxy co-evolution. However, very little is known at present about this interaction at very high−z. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations in Bands 7 and 3 of six radio-loud (RL) quasar host galaxies atz > 5. We recovered [C II] 158 μm line and underlying dust continuum emission at > 2σfor five sources, while we obtained upper limits for the CO(6-5) emission line and continuum for the remaining source. At the spatial resolution of our observations (∼1″​​.0–1″​​.4), we did not recover any perturbed or extended morphologies or kinematics, which are known signatures of potential mergers. These galaxies already host large quantities of gas (∼1010M), with [C II] luminosities ofL[C II] ∼ 108 − 9 Land [C II]-based star formation rates of 30 − 400 Myr−1. In building their radio/submillimeter (radio/submm) spectral energy distributions (SEDs), we found that in at least four cases, the 1 mm continuum intensity arises from a combination of synchrotron and dust emission. The initial estimation of synchrotron contribution at 300 GHz in these cases is of ≳10%. Assuming a scenario where the continuum emission is solely due to cold dust as an upper limit, we obtained infrared (IR) luminosities ofLIR ∼ 1011 − 12 L. We compared the properties of the sources inspected here with a large collection of radio-quiet sources from the literature, as well as a sample of RL quasars from previous studies at comparable redshifts. We recovered a mild potential decrease inL[C II]for the RL sources, which might be due to a suppression of the cool gas emission due to the radio jets. We did not find any [C II] emitting companion galaxy candidate around the five RL quasars observed in Band 7. Given the depth of our dataset, this result is still consistent with what has been observed around radio-quiet quasars. Future higher spatial-resolution observations, over a broader frequency range, of high−zRL quasars hosts will allow us to further improve our understanding of the physics of these sources. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. null (Ed.)
  3. Abstract Nuclear rings are excellent laboratories for studying intense star formation. We present results from a study of nuclear star-forming rings in five nearby normal galaxies from the Star Formation in Radio Survey (SFRS) and four local LIRGs from the Great Observatories All-sky LIRG Survey at sub-kiloparsec resolutions using Very Large Array high-frequency radio continuum observations. We find that nuclear ring star formation (NRSF) contributes 49%–60% of the total star formation of the LIRGs, compared to 7%–40% for the normal galaxies. We characterize a total of 57 individual star-forming regions in these rings, and find that with measured sizes of 10–200 pc, NRSF regions in the LIRGs have star formation rate (SFR) and Σ SFR up to 1.7 M ⊙ yr −1 and 402 M ⊙ yr −1 kpc −2 , respectively, which are about 10 times higher than in NRSF regions in the normal galaxies with similar sizes, and comparable to lensed high- z star-forming regions. At ∼100–300 pc scales, we estimate low contributions (<50%) of thermal free–free emission to total radio continuum emission at 33 GHz in the NRSF regions in the LIRGs, but large variations possibly exist at smaller physical scales. Finally, using archival sub-kiloparsec resolution CO ( J = 1–0) data of nuclear rings in the normal galaxies and NGC 7469 (LIRG), we find a large scatter in gas depletion times at similar molecular gas surface densities, which tentatively points to a multimodal star formation relation on sub-kiloparsec scales. 
    more » « less
  4. It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M 51 in 33 GHz radio continuum, an extinction-free tracer of star formation, at 3″ scales (∼100 pc). We combined this map with interferometric PdBI/NOEMA observations of CO(1–0) and HCN(1–0) at matched resolution for three regions in M 51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M 51; for example, the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite its high dense gas fraction. Combining our results with measurements from the literature at 100 pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars. 
    more » « less